RL-TR-95-41
Final Technical Report
March 1995

A METHODOLOGY FOR APPLICATION
DESIGN USING ACTIVE DATABASE
TECHNOLOGY

Georgia Institute of Technology

Shamkant Navathe, Asterio Tanaka, Ramesh Madhavan,
and Yee Huat Gan

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

N A ,

| = : 4 &
o Nin s i i
A% iy
IR
I N e
i £
f L
1 R S n:.w“»:,ar.'gi-:.-a.‘J»:L-i.;'ﬁ‘m%‘a;’a-r'x&’

DTIC QUALITY INSPECTED 8

Rome Laboratory
Air Force Materiel Command
Griffiss Air Force Base, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign natioms.

RL-TR-95-41 has been reviewed and is approved for publication.

APPROVED: é%rh/hﬂ/j// : M

RAYMOND A. LIUZZI
Project Engineer

%ézﬂé‘

HENRY J. BUSH
Deputy for Advanced Programs
Command, Control & Communications Directorate

FOR THE COMMANDER:

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization,

please notify RL (C3cA) Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a
specific document require that it be returned.

REPORT DOCUMENTATION PAGE | Gv b ororores

Pubic reporting burden for this collection of information is estimated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needad, and cormplating and reviewing the collection of ifformation. Send comme—ts regarding this burden estimate or any other aspect of this
colection of nformation, including suggestions for redkucing this burden, to Washington Headquarters Services, Directorate for iformation Operations andReports, 1215 Jefferson
Davis Highweay, Suite 1204, Arington, VA 22202-4302, and to.the Office of Masnagement and Budget, Paperwork Reduction Project (0704-0186), Washington, OC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1995 Final Jun 93 - Oct 94
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A METHODOLOGY FOR APPLICATION DESIGN USING ACTIVE C - F30602-93-C-0175
DATABASE TECHNOLOGY PE - 62232N
6. AUTHOR(S) i PR - RAZ7
Shamkant Navathe, Asterio Tanaka, Ramesh Madhavan, and TA - 00
Yee Huat Gan WU - P4
7. PERFORMING OR! IZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Georgia Tech Research Corporation REPORT NUMBER

Centennial Research Building, Room 246
Georgia Institute of Technology

Atlanta GA 30332-0420 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
NCCOSC RDTE Div AGENCY REPORT NUMBER
53560 Hull St Rome Laboratory (C3CA)
San Diego CA 92152-5001 525 Brooks Rd

Griffiss AFB NY 13441-4505 | RL-TR-95-41

11. SUPPLEMENTARY NOTES
Rome Laboratory Project Engineer: Raymond A. Liuzzi/C3CA/(315) 330-3528

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maxdmum 200 warde)
Even though there has been a fair amount of work done in the incorporation of active
behavior into database systems, little research has addressed the conceptual,
DBMS-independent representation of the active behavioral aspects of the applications.
This report presents the work done in the introduction of active aspects of
information systems at the conceptual schema level. ER is described, which is an
extension of the ER model to express active database behavior in the form of events
and rules. Also described is a language to accommodate the concepts of events and
rules in the ER schema. A methodology is proposed for the design of active databases
based on the ER model, as an extension for traditional database design methodology.
With the extension, the data model mapping step includes the translation of active
database behavior specified in the conceptual schema into triggers or event alerters
written in the DBMSs DDL/DML. TFinally, the implementation of a graphical tool is
described, which can do the mapping from the ER model to the logical schema of the
target database.

14. SUBJECT TERMS 18 r?aémasn OF PACES
Computers, Software, Database, Artificial intelligence 16 PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION {19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE

OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 208 Ae. o
Prescrbed by AN 5ta [8
. 298-102

DTIC QUALITY INSPECTED 3

A Methodology for Application Design using
Active Database Technology :
Final Report

|

1
3
Shamkant Navathe - P.I. —
. i
Asterio Tanaka By |
Ramesh Madhavan | pistribution/ I }
Yee Huat Gan | Aveilapility, Codes
Aveil eandfom
‘piet | Special.
Abstract h’ l l

Even though there has been a fair amount of work done in the incorpoTation of Gc
havior into database systems, little research has addressed the conceptual, DBMS-independent
representation of the active behavioral aspects of the applications. This report presents the
work done in the introduction of active aspects of information systems at the conceptual
schema level. We describe (ER)? ; an extension of ER model to ezpress active database
behavior in the form of events and rules. We also describe a language to accommodate the
concepts of events and rules in the ER schema. We propose a methodology for the design of
active databases based on the (ER)* model, as an estension for traditional database design
methodology. With this extension, the data model mapping step includes the translation of
active database behavior specified in the conceptual schema into triggers or event alerters
written in the DBMS’s DDL/DML. We also describe the implementation of a graphical tool

~ which can do the mapping from the (ER)? model to the logical schema of the target database.

1 Introduction

Database systems have evolved and become very popular in the past few decades, and their
scope of application has expanded from traditional business data processing systems to new
classes of non-conventional information systems. There has been an increasing interest in
providing new functionalities to DBMSs, sc that they can fully support such non-conventional
applications. Active database capability is one such functionality of the next-generation

DBMSs.

Traditional DBMSs are passive in that they only execute explicit requests from user
queries or application programs. At best, they may trigger update actions to enforce ref-
erential integrity constraints. Such limitation complicates the use of traditional DBMSs in

1

information systems that deal with problems concerned with observation of tasks and situa-
tions such as: air traffic control, military operations planning, process control/fault diagnosis
network management, hospital monitoring systems, inventory control, economic surveillance
and forecasting, and cooperative problem solving, to name a few. These applications typ-
ically require monitoring the database state (both static and transitional) and reacting to

certain events.

An active DBMS has been defined as a system with full database functionality and the
additional capability of monitoring the state of the database and executing some predefined
actions when appropriate events are detected. An active DBMS must have this functionality
plus the ability to react independent of an external request. Thus, an active database
behavior can be defined as the enforcement of database constraints and situation/action
rules through actions initiated by the database system when the appropriate events occur,

independent of external requests.

1.1 Problem Overview

Current design methodology for relational databases comprises a conceptual design phase,
where the relevant part of the real world is modeled in terms of a conceptual schema rep-
resenting the objects of interest, their properties, and the inter-object relationships. The
Entity-Relationship (ER) model is the “de-facto” standard conceptual model used in the
design of relational databases. A conceptual schema defined in the ER model contains both
structural and semantic information and provides DBMS independence.

When the active database behavior is incorporated into the DBMSs, there are no cor-
responding constructs in the conceptual model that can capture the kind of functionality
represented by the incorporation of general-purpose database triggers and event alerters. In
addition, while production rules and stored procedures are very powerful language constructs
capable of modeling any computable database triggers or event alerters, an inherent complex-
ity is introduced when one has to incorporate them into programs. The reason is that they
are procedural and unstructured, in contrast to the declarative nature of the DDL/DMLs.
" A number of practical problems arise in the design and implementation of database triggers
and event alerters using rules and procedures.

e Rules are difficult to understand and control: they can fire indefinitely and may go
into infinite loops; conflicts are possible, and hard to predict.

e The enforcement of complex integrity constraints and business rules usually requires
the coding of several database triggers to cover all potential invalidating events.

o There are significant differences between the language constructs in different DBMSs.
As a consequence, designing the structure and behavioral aspects of a database that fully

incorporate the active behavior of a given set of applications using production rules and
stored procedures can be a very difficult task.

1.2 Motivation

Even though there has been a fair amount of work done in the incorporation of events,
rules, and triggering mechanisms into database systems, little research has addressed the
conceptual, DBMS-independent representation of the active behavioral aspects of the appli-
cations. In addition, with the enlargement of the gap in the database design process due to
the inclusion of production rules and stored procedures in the DDLs/DMLs, new tools are
required to specify and translate active database behavior from the conceptual to the DBMS
level, as well as to analyze and validate the specification of behavior. Such tools will help in
overcoming the inherent complexity of programming with these language constructs.

This paper reports the work done in the introduction of active aspects of information
systems in the conceptual schema. We describe (ER)? : an extension of the ER model to
express active database behavior in the form of events and rules. This extension allows the
capturing of more application semantics at the conceptual level, along an axis orthogonal to
static data modeling and process modeling. We also describe a language to accommodate
the concepts of events and rules in the ER schema. We propose a methodology for the
design of active databases based on the (ER)? model, as an extension to the traditional
database design methodology. With this extension, the data model mapping step includes
the translation of active database behavior specified in the conceptual schema into triggers
or event alerters written in the DBMS’s DDL/DML. We also describe the implementation
of a graphical tool which can do the mapping from the (ER)? model to the logical schema
of the target database.

The following advantages can be derived from the extended modeling and design method-
ology.

e Reduced database design effort : the burden of capturing the behavior of the model
will be shifted to the tool.

¢ Reduced application development effort : it is accomplished by an automatic transla-
tion of events and rules into DBMS language constructs.

o Better control of application development : this accrues from introducing precision in
the specification of behavior.

o Better quality of overall design of the database and the applications : this is realized
by an interactive development environment capturing the knowledge of experts and
automatically dealing with the constraints of the DBMS.

The rest of the report is organized as follows. The next section describes the overall
approach to the application design of active databases. It includes the present application
design approach in traditional databases, a description of the (ER)? raodel and the design
approach using the (ER)? model. Section 3 gives a description of the active database design
tool.

2 Overall Approach to Active Database Design

This section describes the database design methodology. The initial subsection gives an
overview of the current state of practice of relational database design using the well estab-
lished ER approach. The next subsection introduces the (ER)? model which is an extension
of the ER model to express active database behavior in the form of events and rules. The
third subsection describes the database design approach for active databases using the (ER)?

model.

2.1 Application design using ER model

The conceptual level is an important part in the three level ANSI architecture. A concep-
tual schema can be defined as the total information contents of the database, both of its
structure and the semantics. The conceptual schema is the determinant to the concept of
data independence. '

The most widely used semantic data model is the ER model and its variations. The basic
ER model does not allow the expression of the semantics of the real world. A number of
extensions and variations have been proposed to express additional semantics [1]. The ER
model can be represented graphically by an ER diagram.

The process of mapping the data model from ER to relational in the relational database
design methodology has been mentioned in section 1.2. This is a very well understood process
(e.g., see [3]), strongly supported in theory and largely used in practice. The mapping takes
place in two stages. In the first stage, an abstract relational schema is generated from the
ER schema that is independent of any specific features of the DBMS implementation of the
relational model. In the next stage the abstract relational schema is mapped into a collectlon
of data definition statements in the language of a specific DBMS.

2.2 The (ER)? Model

The ER approach uses a set of simple concepts and a graphical formalism that is easy to
understand. However, the major drawback of the ER approach is the lack of constructs
for specifying behavior. Domain constraints such as “salary cannot be less than 10,000 or
greater than 100,000” cannot be modeled in the ER model, unless it is possible to define a
range of permitted values for an attribute type. Constraints involving derived information,
e.g. “the total weight of the passengers on the plane cannot exceed 20 tons”, also cannot
be modeled in the ER diagram. Dynaraic constraints on state transitions, or constraints
involving temporal aspects cannot be enforced in the basic ER formalism. Most of these
constraints are currently described in application programs as validation rules. Because
many programs use the same dafta, rules must be repeated in every program, thus cizating
redundancy and, as a consequence, a source of inconsistency.

Recent research efforts have tried to overcome the above mentioned drawbacks. There
are two classes of solutions: basic approaches, in which integrity constraints are formulated

4

in combination with the ER model, without introducing fundamentally new concepts, and
novel approaches, in which the concepts of events and actions are introduced, thus adding

new constructs to the ER model.

The basic approach could be either static or dynamic. In the static approach, all rules
are defined directly as a set of structural integrity constraints which must hold for each
state of the database. For dynamic rules, either a single state or a pair of consecutive states
of the database are involved. This means that the database contains not only the current
state of the universe of discourse, but also all relevant historical information, while the ER
diagram must describe this mixture of current and historical information. External events
are modeled as relationships in the ER diagram, and help to establish the link between
two successive states. The drawback is the need for a large number of rules to describe all
the interconnections between the different types of information amalgamated into a single
diagram, making it unmanageable in most cases.

In the dynamic approach, all allowed and necessary update operations on the database
are described. For this purpose, a general syntax is proposed to define constraints on the
basic update operations. Instead of determining only whether a new database state is valid,
it is possible to determine whether an update operation, which is involved in the creation of a
new state is permissible. A number of drawbacks are inherently associated with the update
oriented approach: rules may conflict, lead to an ambiguous situation, or lack sufficient
flexibility; sometimes they can be checked only afterwards in an expensive way; historical
information is projected in the current database state, thus adding to the complexity. -

The novel approaches introduce new primitive concepts of action or event as a basis for
conceptual design. By using actions as primitive constructs, the history of the system is
reflected in the sequence of actions, so that it is no longer necessary to model all relevant
past information in the current state of the database. But the novel approaches aim at
transformation of the high level specification of the problem into an implementation model
in a target programming language. These approaches lack most of the characteristics that
have made database systems so successful. With the incorporation of dynamic features
in the new generation of DBMSs, the trend is to avoid non-database solutions to database
problems. In this sense, there is stili room for extensions to the ER methodology for database
modeling and design. '

As a basis to the proposed extensicns to the ER model, we adopt a variant of the ER
model that includes generalization/specialization, both homogeneous and heterogeneous, and
full aggregation which allows relationships involving relationships, thus requiring directed
arcs in the ER diagram to denote inter object connections. In our approach, we view the
real world as constituted by entities, relationships, events and rules, all primitive objects
of the model. While entities and relationships, along with their attributes, represent the
structural aspects of the information system being modeled, events and rules represent the
active behavior that controls the states of the data objects and their attributes. We call the
resulting model as the Entity Relationship model with Events and Rules, or (ER)? model
for short. The grammar for the extensions are given in the appendix.

Figure 1 shows the meta-diagram of the (ER)? model. The two new objects “EVENT”

and “RULE” are incorporated into the ER model as specializations of “ER2.OBJECT”. Like
entities and relationships, events and rules may have attributes that describe their properties.
Being first-class objects, they may be connected to each other and to other objects through
meta-relationship “ER2_Connections”. Possible connections involving events and rules are:

ER Connection

from (M) to (M)

/ \

1D RELATIONSHIP

ENTITY

ATTRIBUTE

Figure 1: Meta-ER-diagram of the ER Model

o Inter-event connections: “Precedes” referring to the order of occurrence of events.
e Inter-rule connections: “Priority” to determine the order of execution of rules.

e Connections between events and rules: “Fires” between an event and the associated
rules. “Raises” between a rule and the events that its execution gives rise to.

e Connections between events and entities/relationships: “Affects” meaning that an
event raised by the execution of a rule may affect the state of an entity/relationship.
“Affected-by” meaning that an entity/relationship is affected by the occurrence of an

event.
2.2.1 Events

An event is something that happens at a point in time, and, theoretically has no duration.
Events may logically precede or follow one another or may be unrelated. There are two types
or ordering of events to be considered: a causal ordering and a temporal ordering. The first

6

one relates events of different types (e.g. the event “flight X landed” cannot occur before the
event “flight X takes off”). Not all pairs of events bear this relationship. Causally unrelated
events are said to be concurrent and can occur in any order because they have no effect on
each other. The temporal ordering, on the other hand, is based on the linear ordering of the
time of occurrence of the events. As far as the activation of the behavior is concerned, we
consider that the time of detection of an event is the same as its time of occurrence. This
may not be true for actual systems, but it is not a problem in conceptual modeling as long
as the order is preserved [5].

We distinguish events that occur on data objects or attributes stored in the database
(database events) from those events that are external to the database, usually generated by
application programs (external events). The third type of events (system events) are signals
generated by the underlying system such as interrupts and clock events.

2.2.2 Rules

A rule consists of a condition part and an action part. The syntax for rules is given in the
appendix. The condition part of the rule is a predicate over the state of the database. The
condition part could be empty, a simple condition, or a complex condition. The condition
acts as a guard on action list. If the condition fails, no action will be triggered and the rule
execution will fail. An action list is a sequence of commands that can be database actions
or external actions like raising an external event or sending a message.

2.2.3 Formal specification of the (ER)? Model

In order to derive an operational semantics for the language, i.e. the semantics of the
language in terms of the execution of its operations in an abstract computing machine, a
formal specification of the (ER)? model is required. In this section we will give the formal
specification of an event and the operational semantics of the action “raise”. The complete
formal specification for the (ER)? model can be found in [4].

An event type descriptor is a 4-tuple:

event.id, event_attr_set, event_spec, fired_rule_set
P

where

o event.id € E is the identification of the event type;
o event.attr_set C A is the (possibly empty) set of attributes carried by the event type;

e event_spec comprises either a database event in D or the name of the signal (external
or system event) in S

o fired_rule_set C R is the (possibly empty) set of rules fired by the occurrence of the
event type.

A rule type descriptor is a T-tuple:
(rule.id,rule_attr_set, priority_level, firing_event,

condition_spec, action_list_spec, raised_event_set)

where

o rule_id € R is the identification of the rule type;

o rule_attr_set C A is the (possibly empty) set of attributes of the rule type (carried by
its firing event);

e priority_level € P is the identification of the priority level of the rule type, if any;
o firing.event_set C E is the (at least singleton) set of event types that fire the rule;

o condition_spec is the specification of the condition part of the rule in the active behavior
specification language; '

e action_list_spec is the specification of the actions of the rule in the active behavior
specification language;

e raised.event_set is the (possibly empty) set of event types raised by the execution of
the rule.

RAISE e: s(p-)

Given event.id e, signal_name s, and actual_parm_list p_l, RAISE adds e to the
list of detected events; s and the values in p_.l must conform to the event type

descriptor of e.
Pre-conditions:

l.eeFE
2. s € S, event_name(e) = s

3. If p_l is specified, let p_l =< a;,a3,...,an >
and event_altr_set of e =< Ay, As, ..., A, >. Then each value must be in the

proper domain, i.e.,
a; € domain(A;),1 <1 <n

Execution:
Add e to the list of detected events.
Post-conditions:

e is raised.

*

\/

ER2 OBJECT
from (M) to M) /
\/.‘-A
o_A
A
: ER OBJECT .
g Sy -
Is_A s A 10
— EVENT
ENTITY RELATIONSHIP

| ATTRIBUTE

Figure 2: Meta-ER-diagram of the (ER)? Model

2.2.4 Meta-schema

The (ER)? model can be specified in a meta-schema and represented as an (ER)? diagram,
which is a meta-(ER)?%-diagram of the (ER)? model itself. This is shown in Figure 2, where
the event and rule objects are integrated in the model with the appropriate notation, and
the “ER2_Connection”’s of Figure 1 are explicitly represented by the links “Affected_by”,
“Affects”, “Fires”, “Raises”, and by the relationships “Precedes” and “Priority”. The exter-
nal environment (system , applications, and users) is also shown as a potential source and
target of events.

2.2.5 Example

As an illustration, Figure 3 shows an (ER)? diagram of a company’s EMPLOYEE-DEPARTMENT-
PROJECT database with some events and rules attached to the data objects. The following

ER schema is assumed - for simplicity, details such as cardinality ratios (“1”,“M”), iden-
tification dependencies (“ID”), participation constraints (“Total”), and roles (“manager”,
“employer”) are shown only in the diagram, and attributes are specified only in the textual
schera:

¢ EMPLOYEE (ssn, name, job, address, birth date, status, salary)

¢ DEPARTMENT (name, location)

e PROJECT(name, budget)
e DEPENDENT(EMPLOYEE._ssn, name, birth_date)
¢ Employed(EMPLOYEE.ssn, DEPARTMENT name)

o Manages(EMPLOYEE_ssn, DEPARTMENT name)
o Works(EMPLOYEE_ssn, PROJECT name, start_date, hours_week)

/ B/
(&3
d
(¢6) / 2/
d & Total-M_¢EmployedH~n_employer
(3 d
DEPENDENT -I-D>- EMPLOYEE DEPARTMENT
manager,
Manages
4 " d 1 1
(€2
[/ ~ / T
M
o e @
PROJECT
d : deleted
m : modified

Figure 3: (ER)? Diagram of a COMPANY Database

The following behavioral sentences are specified in terms of the events and rules repre-
sented in Figuare 3:

WHEN el : PROJECT MODIFIED
FIRE r1 (“Policy for budget reduction”) :

10

IF NEW budget < OLD budget

THEN DELETE_ENTITY EMPLOYEE (ssn = OLD EMPLOYEE_ssn,
status = “temporary”) (e2),
RAISE e3 : salary._review.

WHEN e2 : EMPLOYEE DELETED
FIRE r2 (“Restriction to firing engineers”) :
IF OLD job = “engineer”
THEN MESSAGE : “Employee is an engineer, deletion rejected”,
REJECT_-OPERATION.

WHEN e2 : EMPLOYEE DELETED
FIRE r3 (“Cascaded deletion of temporary employees”) :
IF OLD status = “temporary”
THEN PROPAGATE_OPERATION (e4 : Employed DELETED,
e5 : Works DELETED, e6 : DEPENDENT DELETED).

WHEN e5 : Works DELETED
FIRE r4 (“Warning message to project manager”) :
"MESSAGE : “Inform change on employee assignment to project manager”
(e7 : manager_warning).

The (ER)? diagram represents the active database behavior in the form of events and rules
and their interaction with data objects. To avoid cluttering the diagrammatic representation,
we chose to keep the specification of events, conditions, and actions apart from the diagram,
using textual description. The same user interface design technique is adopted by most of
the current ER diagramming tools, where the attributes are specified in pop-up windows
that are displayed when the corresponding object symbols are clicked. This technique keeps
the diagram simple and easy to read, without loss of information.

As shown in the above example, the (ER)? model can capture a variety of constraints and
situation/action behaviors, such as a high-level organizational policy (rule rl), a restrictive
prescription (rule r2), the enforcement of an integrity constraint (rule r3), or a database event
alerter (rule r4). Potentially, this framework can represent any application-relevant behavior
that can be managed by an active DBMS. In addition, this representation can be easily
adapted to data abstraction extensions to the ER model such as generalization/specialization
and aggregation. These extensions do not disturb the (ER)? framework because of the
orthogonality of the added dimension.

2.3 Application design using (ER)? model

This section describes how au application can be developed using the ER? design methodol-
ogy. The example schema shown in the previous section is used to demonstrate the design

11

methodology. The Ingres database management system is considered as the target database
system for the application. In this section we only give the conversion steps that are required
for the given example. The complete description of the exact steps to be followed in the
conversion of the ER? diagram to the database specification can be found in [4].

The extraction of the description of the ER2-OBJECTS from the ER? diagram is pretty
straightforward. This is the first step in the conversion and in this step the description of the
entities, relationships, events, rules and their connections is extracted from the diagram. This
can be used to get a database independent description of the schema and the specification
of the behavior in the Abstract Behavior Specification language.

3 An Active Database Design Tool

Current database design methodology is supported by automated tools that perform the
transformations and mappings during the design process. Since the modeling power of the
conceptual schema is enhanced with the (ER)? model, it is a natural consequence to extend
the set of tools that assist the design methodology. Among others, a clear benefit of these
extensions is the accuracy of the executable definitions generated for both meta-behavior and
application-related active behavior. In this section we describe the tool we are developing
that can perform the transformations on a (ER)? diagram. The tool is being developed along
the lines of ERDRAW developed at the Lawrence Berkeley Labs (LBL) which can do the

transformations on ER diagrams.

3.1 Architecture of Design Tool

The proposed architecture of the tools is shown in Figure 4. The format of the intermediate
files stored by the tool is similar to that used by ERDRAW. The ER2-GT tool allows the
user to generate and modify an (ER)? diagram which can also store a table representation
of the diagram. This will contain the table representation of the both the ER objects as
well as the events and rules in the diagram. The former part is stored in the same way as
done by ERDRAW and the latter part is stored in a similar format. The stored description
of the ER objects can be converted to database specific data description using the Schema
Definition Tool (SDT) from LBL. The latter part of the description can be converted by the
Active Behavior Translation Tool to the active behavior specification language. The same
description can be converted to the event specification language of any target database.

3.2 Capabilities of the tool

Since the amount of information contained in a sample application could be large, displaying
all the information together in a single screen will be very confusing to the user. Hence the
ER2-GT tool is basically structured into e hierarchy of layers. The base level is the same

12

ER2-GT

SDT er2 file
meta description
Active Behavior
Translation Tool

Snoop Specification

Figure 4: Architecture of the tool set

as the ERDRAW where the ER objects are displayed. In this layer only the entities, rela-
tionships and their interconnections are displayed. The attributes are not directly displayed
in the diagram but they can be displayed textually on demand on a per object basis. In
addition to the base ERDRAW display, in the ER2-GT tool, the behavioral relationship
between object through an Event-Condition-Action (ECA) rule is also displayed.

The details of the behavioral relationships are shown in the next level of the hierarchy
when one of them is selected from the base level display. This is displayed in a different
window so that the user can have much more relevance to the context. This level will
display the entities or relationships, the events, and the rules involved in the particular ECA
rule. However, as in the base level, the details of the objects are not directly displayed in
the diagram. The details can be displayed textually by selecting the object and inquiring its
details.

In addition to the drawing capability, the tool is designed to have some additional capa-
bilities like displaying the relevant information abont an object. This could be something like
inquiring about the rules that are affecting a given entity. Such facilities give more flexibility
to the user in making good and correct design. Moreover, the tool allows the user to store

13

a given (ER)? diagram in a file and retrieve and displé.y' of an already stored diagram from
a file.

The active behavior translation tool is capable of converting a file stored by the ER2-GT
tool into an equivalent set of statements in the active behavior specification language. It
~is straightforward to extend this tool to be able to generate behavior specification in any

target DBMS language.

Currently, the tool is designed for the Active Behavicr Specification Language as de-
scribed in [4]. We would like the tool to have the capability to generate the specifications
in terms of Snoop [2], which is the Active Behavior Specification Language for Sentinel.
However, as Snoop has a much richer active behavior specification than (ER)?, we would
need to perform a mapping between the graphical symbols represented in (ER)? to Snoop.
For example, Snoop allows the specification of complex events which cannot be represented
directly with an (ER)? diagram. Other Snoop events such as periodic and aperiodic events
are also not represented. This task is not trivial as there is a trade-off between representing
as much active behavior information as possible and cluttering the diagram with too many
symbols. If too much information is shown in one diagram, the resulting picture will be too
confusing to be of any use. More careful study needs to be performed to cbtain the optimal

design.

4 Conclusion

Our thesis was that the lack of modeling constructs for active database capabilities present in
the new generation of relational DBMSs has made it difficult to take full advantage of their
potential benefits. The current database design methodology forces the user to defer critical
modeling decisions concerning the active behavior of the database to late stages of the de-
sign process, where the semantics of the real-world situations are obscured by the intricacies
of the implementation model. Because of the inherent complexity of rule-based program-
ming, database designers do not exploit adequately the functionalities of rules, triggers and
stored procedures. Furthermore, it is expected that more powerful active capabilities will be
added to the DBMSs by non-conventional database applications, enlarging the gap between
modeling and specification of executable definitions of active behavior.

Our approach to this problem was to extend the well-established methodology based on
the ER model by incorporating active database behavior in the form of events and rules as
first-class objects of the model. Besides providing the modeling constructs, we proposed an
extended architecture of tools for assisting the database designer in the task of specifying,
analyzing, and translating active behavior into executable data definition statements in

DBMSs.

14

The following benefits will result from the extended modeling and design methodology:
reduced database design and application development effort with the automatic generation of
meta-behavior and translation of active behavior into executable DBMS language constructs;
better control of the development of database applications; and better quality of the overall

design.

Acknowledgements

This work is supported by the Office of Naval Research and the Naval Command, Con-
trol and Ocean Surveillance Center RDT&E Division, and by the Rome Laboratories under
contract No. F30602-93-C-0175. We are particularly thankful to Ms. Leah Wong for her con-
stant cooperation and support. Dr.Ray Liuzzi of Rome Laboratories also provided valuable
assistance in this project.

References
(1] C. Batini, S. Ceri, and S.B. Navathe. Conceptual Database Design: an Entity-
Relationship Approach. Benjamin/Cummings, 1992.

[2] S. Chakravarthy and D. Mishra Snoop: An Ezpressive Event Specification Language For
Active Databases. Technical Report UF-CIS-TR-93-007, University of Florida, March

1993.

[3] R. Elmasri and S.B. Navathe Fundamentals of Database Systems. Benjamin/Cummings,
1994.

[4] Asterio Kiyoshi Tanaka. On Conceptual Design of Active Databases. Ph. D Thesis,
College of Computing, Georgia Institute of Technology, November 1992.

[5] Tansel A. U. et al. Temporal Databases. Benjamin/Cummings, 1994.

16

Appendix

User Manual

ER-GT is an X-Windows based Motif application that allows the user to specify the
conceptual database schemas in terms of Entity and Relationships. On top of that, it allows the
specification of the active behavior of the system in terms of events and rules. The resulting
diagram is and ER? diagram which is an enhanced version of the ER diagram.

Startup

The program is located in ~active/ergt. To run the program, enter active_tool. You
will then see a window with a menu bar at the top.

Menus
The menu consists of the following items:

File Functions Consist of the following submenus:

- Load Schema Load an existing schema from disk.

- Add Schema Add an existing schema from disk.

- Save Schema Saves the current schema to disk.

- Quit Tool Exit the application.

Edit Functions Consist of the following submenus:

- Delete Delete an object from the diagram.

- Move Move an object in the diagram to a new
location.

- Refresh Redraws the diagram.

Add Functions - Consist of the following submenus:

- Entity Add an Entity (represented by a rectangle).

- Relation Add a Relation (represented by a diamond).

- Conn_Arc Add a connecting arc between objects
(represented by a line).

- Text Add text to objects including the description
and other parameters.

- Page Add a new page.

- Event Add an event (represented by a circle).

- Rule Add a rule (represented by a parallelogram).

Next Page Flip to the next page.
Prev Page Flip to the previous page.
First Page Flip to the first page.
Last Page Flip to the last page.
Adding Objects

For adding an object to the diagram, select one of the menu options under the "Add
Functions" menu. Then move the mouse to the drawing area. Press down the mouse button on this
area. The object will be drawn at that location. You can draw as many objects of this type as you
want. For instance, if you have chosen the Entity option, clicking the mouse button will draw
rectangles on the drawing area. After this, you can choose another object, say relation. Now, the
clicking action will draw diamonds on the drawing area. The same is true for both Events and

Rules.

Adding Connecting Arcs

To connect the objects, choose the "Conn_Arc" option under the "Add Functions"
menu. To draw the arc, position the mouse on the first object and press down the mouse button.
Then, while holding the mouse button, drag the mouse to the second object. You will see the cursor
change into a "pen"” and a line will appear while you were dragging the mouse. Release the mouse
button when the cursor is in the second object and an arc will be drawn between the two objects.
Arcs can only be drawn between two objects that are not the same. Also, you must position the
cursor on the first object before pressing the mouse button to start the drawing. Nothing will
happen if the mouse if pressed outside an existing object. Moreover, you must end the mouse drag

on the second object.

Adding Text

To add a text, choose the "Text" option under the "Add Functions" menu. Then
position the cursor onto the object which you want text to be added and click on the mouse button.
An appropriate dialog box will appear and the details of the objects can be added. For adding text
to arcs, you have to position the cursor at the text description in the midpoint of the arc.

Deleting Objects

To delete objects on the drawing area, choose the "Delete" option under the "Edit
Functions" menu. Then position the cursor at the object you want to delete. Click and the mouse

button and the object will be deleted. While in this delete rhdde, you may deleted as many objects
as you like. Also, if there are connecting arcs connected to this object, the arcs will be deleted
automatically.

Moving Objects

To move objects on the drawing area, choose the "Move" option under the "Edit
Functions" menu. Then position the cursor at the object you want to move. Press and the mouse
button and hold it. Move the mouse by dragging the cursor to the new location. The object will
move on the drawing area. Release the mouse button and the object will be placed at the new
position. If there are connecting arcs to the object, the arcs will be adjusted accordingly.

Refresh the Drawing Area

To refresh the drawing area, choose the "Refresh" option under the "Edit Functions”
menu. The drawing area and all the objects will be redrawn.

Screen Example

#U.S. GOVERNMENT PRINTING OFF|CE: 1995-610-126-50177

A-3

Rome Laboratory

Customer Satisfaction Survey

RL-TR~-

Please complete this survey, and mail to RL/IMPS,

26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and
feedback regarding this technical report will allow Rome Laboratory
to have a vehicle to continuously improve our methods of research,
publication, and customer satisfaction. Your assistance is greatly

appreciated.
Thank You
Organization Name: ‘ (Optional)
Organization POC: (Optional)
Address:
1. Oon a'scale of 1 to 5 how would you rate the technology
developed under this research?

5-Extremely Useful 1-Not Useful/Wasteful

Rating_

Please use the space below to comment on your rating. Please

suggest improvements. Use the back of this sheet if necessary.

2. Do any specific areas of the report stand out as exceptional?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out."

3. Do any specific areas of the report stand out as inferior?

Yes No

If yes, please identify the area(s), and comment on what
aspects make them "stand out.”

4. Please utilize the space below to comment on any other aspects
of the report. Comments on both technical content and reporting

format are desired.

